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Abstract

To build quantum computer or any other quan-
tum device we need to maintain quantum con-
trol. Entanglement is an important recourse for
quantum control. Many-body physics is used to
study measures of entanglement in ground state
of different dynamical systems.
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Binary system {A&B} , which is in a pure state: a

unique wave function denoted by |ΨA,B〉. it will be a

unique ground state of a dynamical model: interacting

spins, Bose gas or Hubbard model.

|ΨA,B〉 =
d

∑

j=1

|ΨAj 〉⊗|ΨBj 〉 , d > 1

Measure of entanglement. Von Neumann entropy of the subsystem

S(ρA) = −TrA (ρA ln ρA)

ρA = TrB

(

|ΨA,B〉〈ΨA,B|
)

John Preskill, Matthew Hastings, Jens Eisert, Frank Verstraete,

John Cardy
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Another measure is Rényi entropy of a subsystem:

Sα(ρA) =
1

1 − α
lnTrA(ραA)

where α is a parameter.

spectrum of density matrix is also in-
teresting, even eigenvectors are impor-
tant [measurement].

If whole binary system A&B is in a mixed states [thermodynamics].

Mutual entropy:

I{A,B} = SA + SB − SA∪B

Another measure of entanglement of mixed states was suggested by Asher

Peres. We can describe the mixed binary system by a density matrix ρA,B.

Although ρA,B is a positive matrix, the partially transposed ρTA
A,B does not

to have be positive.

NA,B = |
∑

negative eigenvalues of ρTA
A,B|

is called negativity.
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1 AKLT Spin Chain

Implementation of AKLT in optical lat-
tices was proposed by I.Cirac as well as
the use of AKLT model for universal
quantum computation .

Simplest version consists of a chain of spin-1’s in the bulk, and two spin-

1/2 on the boundary. If we denote by ~Sk the vector of spin-1 operators and

by ~sb spin-1/2 operators at boundaries then the Hamiltonian of the system

is

HAKLT =
N

∑

k=−N

(

~Sk
~Sk+1 +

1

3
(~Sk

~Sk+1)
2 +

2

3

)

+ π−N,−N+1 + πN,N+1

1
2
~Sk~Sk+1 + 1

6
(~Sk~Sk+1)

2 + 1
3

is a projector on a state

of spin 2.

The terms π describe interaction of boundary spin 1/2 and next spin 1;

π is a projector on a state with spin 3/2:

πN,N+1 =
2

3

(

1 + ~sN+1
~SN

)

The ground state |GS〉lattice is unique and there is a

gap [Haldane gap].
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a dot is spin-12 and circles mean sym-

metrization [it makes spin-1 at each lat-

tice site]. Solid lines mean anti-symmetrization

[this prevents two neighboring spins form

forming spin 2].

Correlation function are
(

3

4

)

< ~Sx~S1 >= (−1/3)x = p(x)
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Continuos block ofx consecutive spins. The density matrix is

ρ(x) = Trout
(|GS〉lattice〈GS|) z

Entries are correlation functions.

In 2004 Fan, Korepin, Roychowdhury: limiting density matrix is

a 4 dimensional projector ⊛

lim
x→∞ ρ(x) = lim

β→∞

(

exp [−βHblock]

tr exp [−βHblock]

)

This Hamiltonian describes interaction inside of the block:

Hblock =
x

∑

k=1

(

~Sk~Sk+1 +
1

3
(~Sk~Sk+1)

2 +
2

3

)

⊞

Degenerate ground state. MAIN RESULT: Von

Neumann entropy of the block is equal to Rényi entropy

S(∞) = ln 4 ⋆
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We also evaluated the entropy of a finite block on a finite chain:

SvN(x) = 2 − 3 (1 − p(x))

4
log (1 − p(x)) − 1 + 3p(x)

4
log (1 + 3p(x))

1.1 The Spin-S AKLT Spin Chain

AKLT construction for higher integer spin S. To get unique ground state we

place spin S in each bulk cite and spin S/2 at lattice ends [boundary spins].

Hamiltonian is

HS
AKLT =

N
∑

j=−N

2S
∑

J=S+1

AJP
J
j,j+1+π−N,−N+1+πN,N+1

P J
j,j+1

projects the bond spin ~Jj,j+1 = ~Sj + ~Sj+1 on the subspace of mag-

nitude J and the coefficient AJ is positive. The boundary terms describing

interaction between spin S/2 and spin S are

π−N,−N+1 =

3S/2
∑

J=S/2+1

BJP
J
−N,−N+1

; πN,N+1 =

3S/2
∑

J=S/2+1

BJP
J
N,N+1

BJ > 0

Use the Schwinger boson representation. The spin operators are repre-

sented by the Schwinger bosons as S+

j = a†
jbj, S

−
j = b†

jaj, and Sz
j =

(a†
jaj − b†

jbj)/2, where a†
j and b†

j satisfy [ai, a
†
j] = [bi, b

†
j] = δij with the

all the other commutators vanishing. One can say that a†
j and b†

j represent

two copies of harmonic oscillator in each lattice cite.
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Constraint is a†
jaj + b†

jbj = 2S in each lattice site. The VBS state

|VBS〉 =
N+1
∏

j=−N
(a†

jb
†
j+1 − b†

ja
†
j+1)

S|vac〉 >

Consider a block of thex bulk spins. Define the block Hamiltonian by

Hblock =

x
∑

j=1

2S
∑

J=S+1

AJP
J
j,j+1

The ground state is (S + 1)2
degenerate. Limiting density ma-

trix of large block of spins is projector to the degenerate

ground state of the block Hamiltonian ≬

lim
x→∞ ρ(x) = lim

β→∞

(

exp [−βHblock]

tr exp [−βHblock

)

Hosho Katsura, Takaaki Hirano, Ying Xu, Vladimir Korepin 2008. Von

Neumann entropy of the block is equal to Rényi entropy

S(∞) = ln(S + 1)2 ⋉
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We also evaluated the entropy of a finite block for the finite chain.

We also generalized this result to SU(n) Lie group, see Katsura,

Hirano, Korepin arXiv:0711.3882 For vector representation

S(∞) = lnn2 s

1.2 AKLT Spin Chain on a 2D Cayley Tree

AKLT can be constructed for arbitrary graph.The value of the spin

in a vertex is a half of number of nearest neighbors. Let

us consider a Cayley tree (Bethe tree). Each lattice site has three neighbors,

there are no loops [it is also known as Bethe tree].Each site has spin 3/2.

The Hamiltonian of the AKLT model on the Cayley tree is

HC
AKLT =

∑

(i,j)

P3(~Si + ~Sj)
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Figure 1: 4 sites Cayley tree

~Si is the spin 3/2 operator at site i
and P3 is a projector on a joint state
of two neighboring spins with spin 3,
and (i, j) are neighbors on the lattice.
The ground state is unique VBS state.
We calculated the entropy of a block of
spins in a Cayley tree Heng Fan, Vladimir
Korepin, Vwani Roychowdhury arXiv:quant-
ph/0511150

10



1.3 Von Neumann Entropy of the XY Spin Chain

HXY = −
∞
∑

j=−∞
(1+γ)σxjσ

x
j+1+(1−γ)σyjσyj+1+hσ

z
j

where 0 < γ is the anisotropy parameter an h > 0 is the magnetic field.

Can be experimentally implement in optical lattice. Solved by E.H. Lieb, T.

Schulz, D. Mattis, E. Barouch and B.M. McCoy. The ground state is unique

in general and in general there is a gap in the spectrum.

In the double scaling limit, when the size of the block is larger than 1 but

much smaller than the length of the whole chain, the von Neumann entropy

of the block has a limit. Three cases:

• Case IA: moderate magnetic field

2
√

1 − γ2 < h < 2

• Case IB: weak magnetic field

0 ≤ h < 2
√

1 − γ2

• Case II: strong magnetic field h > 2

If we define I(k) as the complete elliptic integral

I(k) =

∫ 1

0

dx
√

(1 − x2)(1 − k2x2)

and the modulus

τ0 = I(k′)/I(k), k′ =
√

1 − k2

The limiting entropy of the block in the double scaling limit was calculated

by Bai Qi Jin, Its and Korepin in 2004. I Peshel 2005.
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S(∞) =
1

6

[

ln

(

k2

16k′

)

+

(

1 − k2

2

)

4I(k)I(k′)

π

]

+ln 2 , k =

√

(h/2)2 + γ2 − 1

γ
(IA) ,

(1)

S(∞) =
1

6

[

ln

(

k2

16k′

)

+

(

1 − k2

2

)

4I(k)I(k′)

π

]

+ln 2 , k =

√

1 − γ2 − (h/2)2

√

1 − (h/2)2
(IB) ,

(2)

S(∞) =
1

12

[

ln
16

k2k′2
+ (k2 − k′2)

4I(k)I(k′)

π

]

, k =
γ

√

(h/2)2 + γ2 − 1
(II) .

(3)

The entropy is constant on ellipsis in γ-h plane. The entropy has a local

minimum S(∞) = ln 2 at the boundary between cases 1A and 1B, actually

density matrix of large block of spins is a half of identical matrix 2X2 (in this

case the ground state is doubly degenerate, and each of the ground states is

a product state). The limiting entropy has absolute minimum S(∞) = 0

is achieved at infinite magnetic field or at γ = 0 for h > 2, where the

ground state becomes ferromagnetic. The entropy diverges to +∞ at the

phase transitions: h = 2 or γ = 0. Another interesting limit is reached

around the point γ = 0, h = 2 which is the intersection of the two critical

lines. This point belongs to both of the critical phases of the XY model

so the entropy does not have an analytical expression on this point. The

limit of the entropy reaching the point (h, γ) = (2, 0) does not exist (it is

direction dependent), we call this point multi critical point [it is also known

as essential critical point]. I proved that depending on the approach to the

essential critical point, the entropy can take any value between 0 and ∞,

and the curves of constant entropy are ellipses and hyperbolas and they all

meet at the multi critical point.

Might be interesting for quantum control, because small changes of pa-
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rameters cause large changes in entanglement.

1.4 Rényi Entropy of the XY Spin Chain

In 2007 we investigated the properties of the Rényi entropy of the XY spin

chain. The analysis showed that in the doubly scaling limit, Rényi entropy

Sα(ρA) = 1

1−α
ln TrA(ρα

A) approaches an asymptotic limit for the large

block of spins:

SR(ρA, α) =
1

6

α

1 − α
ln (k k′) − 1

3

1

1 − α
ln

(

θ2(0, q
α) θ4(0, q

α)

θ2
3
(0, qα)

)

+
1

3
ln 2

Here, the elliptic parameter k , k′ =
√

1 − k2, the modulus parameter q can

be expressed in terms of I(k) q = exp(−πI(k′)/I(k)). is the complete

elliptic integral, and the theta functions θj(z, q) are defined by the standard

series. Rényi entropy also constant on the same ellipsis as von Neumann

entropy. The dependence on γ and h is similar. I proved that the limiting

Rényi entropy of the XY spin chain can be expressed in terms of Klein’s el-

liptic λ-function. Up to the trivial addition terms and multiplicative factors,

and after a proper re-scaling, the Rényi entropy is an automorphic function

with respect to a certain subgroup of the modular group; moreover, the sub-

group depends on whether the magnetic field is above or below the critical

value. The limit of large α defines the largest eigenvalue pm of the density

matrix of the block of spins SR(ρA, α → ∞) = − ln pm:

Sα(α → ∞) = −1

6
ln
kk′

4
+
π

12

I(k′)

I(k)
+O

(

1

α

)

, h > 2

Sα(α → ∞) = −1

6
ln

k′

4k2
+
π

6

I(k′)

I(k)
+O

(

1

α

)

, h < 2
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In the limit of small α the Rényi entropy has a singularity because in the

limit the dimension of the Hilbert space of the block of spins goes to infinity:

Sα(α → 0) =
1 + α

α

π

12

I(k)

I(k′)
+ O(α), h > 2

Sα(α → 0) =
1 + α

α

π

12

I(k)

I(k′)
+ O(α), h < 2

Critical behavior of Rényi entropy is similar to von

Neunamm entropy, but the coefficients in from of the

logarithms are different [α dependent]

The spectrum of limiting density ma-
trix is different form AKLT. Infinitely
many non-zero eigenvalues [form a se-
quence converging to zero]. The eigen-
vector corresponding to the largest eigen-
value is the ground state ofXY on the
block.

The expression essentially simplify if α is a power of 2.
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2 Entanglement Entropy for Gapless Models

In the case of 1D critical models (gapless) the entropy of the subsystems

scales logarithmically with the size of the block. More precisely for a block

of x spins we have

S(n) =
c

3
lnx, x → ∞ �

where c is the central charge of the Virasoro algebra that describes the

critical model. Holzhey, Larsen and Wilczek in 1994 (see also J.Cardy, V.

Korepin). Examples are: Hubbard model, XX0 (or isotropic XY) spin chain,

higher spin generalization of the isotropic XXX anti-ferromagnetic spin chain,

Bose gas with δ-function interaction etc. Rényi entropy also scales logarith-

mically. In 2004 Bai Qi Jin, Korepin

Sα(ρA) =
1

1 − α
lnTrA(ραA) = c

(

1 + α−1

6

)

lnx
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2.1 Isotropic XXX Anti-Ferromagnetic Spin Chain with

Arbitrary Spin

Let us consider the isotropic XXX anti-ferromagnet. For spin s = 1/2 we

can represent the Hamiltonian as:

H1/2

XXX =
∑

nXn,

Xn = ~Sn
~Sn+1 = Sx

nS
x
n+1

+ Sy
nS

y
n+1 + Sz

nS
z
n+1

.

The generalization to spin s = 1 is :

H1
XXX =

∑

n

{

Xn −X2
n

}

Takhatajan and Babujian. Generalization for higher spin s is

Hs
XXX =

∑

n

F (Xn)

The function F (X) is a polynomial of a degree 2s

F (X) = 2

2s
∑

l=0

2s
∑

k=l+1

1

k

2s
∏

j = 0

j 6= l

X − yj

yl − yj

Here yl = l(l + 1)/2 − s(s + 1). The model looks somewhat artificial

but it is solvable by Bethe Ansatz. The model is critical [spectrum of this
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Hamiltonians is gapless ] I showed that the limiting entropy of a large block

of x spins is weakly increases with spin:

S (n) =
s

s + 1
lnx, as x → ∞ z

2.2 The Hubbard model

Fermi Hubbard is important for strongly correlated electrons.

HHubbard = −
∑

j=1

σ=↑,↓

(c†
j,σcj+1,σ + c†

j+1,σcj,σ) + u
∑

j=1

nj,↑nj,↓

Here c†
j,σ is a canonical Fermi operator on the lattice (creates of an electron)

and nj,σ = c†
j,σcj,σ is an operator of number of electrons in site number j

with spin σ, u > 0. Charge and spin separates in the model. Below half

filling cc = 1 and cs = 1. The entropy of the electrons is

S (n) =
2

3
lnx as x → ∞

At half filed band charge degrees of freedom have a gap, but spin degrees of

freedom are gapless, so the limiting entropy

S (n) =
1

3
lnx as x → ∞
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2.3 Bose gas with δ-function interaction

Another model that is receiving considerable attention in the last period,

due to its experimental realization in optical lattices, is the Bose gas with

δ-function interaction with the Hamiltonian

HBose =

∫

dx
[

∂ψ†
x∂ψx + gψ†ψ†ψψ

]

where ψ is a canonical Bose field and g > 0 is a coupling constant. It can

be shown that the field theoretical problem can be reduced to a quantum

mechanical problem with the Hamiltonian

HN = −
N

∑

j=1

∂2

∂xj
+ 2g

∑

N≥k>l≥1

δ(xk − xl)

which can be solved via Bethe Ansatz. The model is gapless and the central

charge c is 1 so the entropy of the gas on a space interval [0, x] also scales

as

S(x) → 1

3
ln(x), x → ∞ ♦
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Figure 2: (a)The limiting entropy as a function of the magnetic field at

constant anisotropy γ = 1/2. The entropy has a local minimum S = ln 2

at h = 2
√

1 − γ2 and the absolute minimum for h → ∞ where it vanishes.

S is singular at the phase transition h = 2 where it diverges to +∞. The

three cases are marked. (b) Three-dimensional plot of the limiting entropy

as a function of the anisotropy parameter γ and of the external magnetic

field h. The local minimum S = ln 2 at the boundary between cases 1a

and 1b is visible and marked by a continuum line. S diverges to +∞ at

the phase transitions h = 2 and γ = 0, h ≤ 2. The entropy takes every

positive value in the vicinity of the multi critical point (h, γ) = (2, 0).
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